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As a step towards understanding the thermodynamics of multi-branched polymer systems, 
we look at a lattice model of a uniform branched polymer with fixed topology interacting with a 
surface and ask for the free energy of the polymer as the number of monomers which compose 
the polymer goes to infinity. The conformations of a uniform branched polymer with fixed 
topology are modelled by embeddings of a graph in the simple cubic lattice. Rigorous results 
about this model are reviewed. The results suggest that large branched polymers in three dimen- 
sions interacting with a plane have the same free energy as large linear polymers interacting 
with a plane; the same is not true, however, for the corresponding two-dimensional problem 
where the polymer interacts with a line. 

1. I n t r o d u c t i o n  

Star polymer  synthesis and the star-like structure of  co-polymers  such as 
micelles has p rompted  recent interest in extending models  of  linear polymers  to the 
s tudy of  star polymers  [1-6]. Also, since it is possible to tether polymer  chains to 
surfaces and to each other, experimentalists are now studying very complicated 
branched polymer  systems such as brushes [7] and so interest in modelling multi- 
branched polymer systems has grown [8-11]. 

The self-avoiding walk model  is known to be a good model  of  the excluded 
volume effect on large linear polymers in dilute solution and hence recent models  of  
star polymers  in dilute solution have been based on self-avoiding stars. These mod-  
els have focused on uniform stars where each branch has the same number  of  mono-  
mers, n, and the total number  of  monomers  is N = n f  + 1, w h e r e f  is the number  
of  arms in the star. Whit t ington and Soteros [5] have obtained rigorous results in 
the infinite n limit for a single self-avoiding star interacting with a surface on the 
simple cubic and square lattices. Halperin and Joanny  [6] have studied a model,  
based  on the D a o u d - C o t t o n  model  for free stars, o f  a single star polymer  interact- 
ing with a surface in two and three dimensions. The results o f  Whit t ington and 
Soteros are that  the limiting free energy per edge of  a single star interacting with a 
plane in three dimensions is the same as the corresponding free energy for a self- 
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avoiding walk. In other words, when the branches of the star are long enough they 
act essentially like independent self-avoiding walks. In contrast, in two dimensions 
the limiting free energy per edge of a star strongly adsorbed to a line is less than 
the corresponding free energy of a self-avoiding walk. This is because, in the strong 
adsorption regime, a significant fraction of  the vertices of  a star will not  be able to 
interact with the surface while all the vertices of  a walk are free to interact with 
the surface. Since it is difficult to obtain rigorous results about  the average size and 
shape of  a self-avoiding star polymer, the results of  Whit t ington and Soteros do 
not  address the predictions of  Halperin and Joanny regarding the sombrero shape 
of  the star in intermediate interaction regimes. The results of Whit t ington and 
Soteros however do confirm the terms of order N in the free energy calculations of  
Halperin and Joanny. 

A next step towards understanding the effects of branching and topology on 
the properties of  a polymer is to investigate whether results similar to those 
obtained for star polymers hold for more complex branched polymer systems. 
Towards this end, it has been shown [11] that the results of whi t t ing ton  and Soteros 
can be extended to any uniformly branched polymer with fixed topology. In this 
paper this extension will be reviewed and some of the proofs will be outlined. 

2. The  mode l  

We represent the topology of the polymer by a graph T and, in order to take 
into account the excluded volume effect, we look at embeddings of  the graph in the 
simple cubic lattice, Z 3. The results discussed here can be readily extended to corre- 
sponding models on other regular lattices; however, we focus on Z 3 for conveni- 
ence. 

A graph, % representing the topology of a polymer is assumed to have no ver- 
tices of  degree two; the degree of a vertex of a graph is defined to be the number  of  
edges incident on the vertex and a loop is assumed to contribute twice to the degree 
of  a vertex. An edge o f t  is referred to as a branch. In the special case of  a ring poly- 
mer -r is taken to be the circle graph, T = O, and it is assumed that  the circle graph 
has one vertex (a vertex of  degree two) and one branch. Vertices of T having degree 
greater than two are referred to as branch points; vertices of degree one are named 
endpoints. 

The conformations of  a polymer with topology "r are represented by embeddings 
of T in the simple cubic lattice. An embedding of  T in the simple cubic lattice is 
defined to be any subgraph of  the simple cubic lattice which, if one ignores vertices 
of  degree two, is isomorphic to z. (That is, an embedding of  r is any subgraph of  
the simple cubic lattice which is homeomorphic  to -r.) Since we are concerned with 
embeddings of  T on the simple cubic lattice we will only be interested in "r e G6, 
where G6 is the set of graphs whose branch points all have degree less than or equal 
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to six (the coordination number of  the lattice). Soteros et al. [12] proved that  for 
any r e G6 there exists an embedding o f t  in the simple cubic lattice. 

In this paper we are concerned with uniform branched polymers and hence we 
define a uniform embedding of "r in the simple cubic lattice to be an embedding o f t  in 
the simple cubic lattice such that each branch of the embedding is composed of 
the same number  of edges. L e t f  be the number of branches o f t  and c its cyclomatic 
index (number of independent cycles), then by Euler's relation a uniform embed- 
ding of r with n edges per branch is composed of  N = nf - c + 1 vertices. Note,  
that  a necessary condition for a graph z E G6 to have a uniform embedding in Z 3 
with an odd number  of edges per branch is that r have no cycles of odd length. 
K6nig's theorem (see ref. [13]) implies therefore that a necessary condition for -r to 
have a uniform embedding in Z 3 with an odd number of edges per branch is that  -r 
be bipartite (2-colourable). By constructing embeddings Soteros [11] showed that  
this is also a sufficient condition. Thus for any r ~ G6 and n even there exists a uni- 
form embedding of ~- in Z 3 with n edges per branch while for n odd, there exists a 
uniform embedding o f t  in Z 3 with n edges per branch if and only i f r  is bipartite. 

We write gn (7) for the number of uniform embeddings per lattice site of ~- in Z 3 
having n edges per branch. For instance, i f r  is the circle graph, r = O,  then the uni- 
form embeddings with n edges per branch are self-avoiding polygons with n edges 
and hence g4 ( 0 )  = 3, g6 ( O )  = 22 and g8 (O) = 207. Similarly if z is the line graph, 
"r --- t, then the uniform embeddings with n edges per branch are undirected self- 
avoiding walks with n edges and hence gl ([) = 3 and g2(I) : 15. Some other exam- 
ples of graphs include star graphs with four branches, z - -  x; theta graphs, 
r -- O;  figure eight graphs, r = 8; dumbbell graphs, ~- = O - O .  The number  g , ( r )  
is hence an estimate for the number  of conformations of a polymer having topol- 
ogy r and composed of  N = nf - c + 1 monomers  uniformly distributed through- 
out  the branches of the polymer. 

F rom the results of Hammersley and Mor ton  [14] for directed self-avoiding 
walks one can show that 

0 <  lim n -1 log gn([) = e ; < O o ,  (2.1) 
n - - +  o o  

where ~; is called the connective constant for Z 3, and Hammersley [I 5] has shown 
that  

lim n -1 log g , (O)  = ~c, (2.2) 
n -q,- o<3 

where n is assumed to go to infinity through the even integers. A consequence of 
the results to be reviewed here is that 

lim N -1 log gn(7-) = ~, (2.3) 
n --¢- oQ 

where, if ~- is not  bipartite, the limit is approached through even values of  n and 
N = nf - c + 1. This can be equivalently expressed as 
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gn(T)  = e  nN+°(N) , (2 .4)  

which indicates that the exponential growth rate of  the number of conformations 
of a polymer with fixed topology as the size of the polymer grows is a constant inde- 
pendent  of  the topology of  the polymer. Of course the unknown o(N) in terms in 
this asymptotic expansion may depend on 7- (see, for example ref. [8]). 

For any graph 7- e G6 we can define nj to be the number  of  branch points OfT hav- 
ing degree, j ,  3 ~<j ~< 6, and n~ to be the number of  end points of  -r. (In the special 
case of  the circle graph, 7- = (3, we assume that n2 = 1 , f  = 1,c = 1 and 
nj = O,j ¢ 2.) Euler's relation gives nl = f - c - ~_,6=2n j + 1. The graph index set 
{f, c, nj :j/>2} does not, however, completely define 7-. In particular, the theta 
graph, 7- = Q and the dumbbell graph, 7- = C)-C) have the same graph index set, 
f = 3, c = 2, n3 = 2, nj = 0,j  ¢ 3. These two graphs are however not isomorphic 
and in particular the dumbbell graph has a cut-edge, an edge which when cut results 
in a disconnected graph, while the theta graph does not. 

3. U n i f o r m  b r a n c h e d  po lymers  in teract ing with a surface 

We discuss next a model of a uniform branched polymer with topology 7- inter- 
acting with a surface. We consider uniform embeddings of  7- confined to a half- 
space, z/> 0, in the simple cubic lattice and assign to each embedding an interaction 
energy proport ional  to the number  of vertices of the embedding in the plane 
z = 0. We assume that the polymer contacts the surface at least once; however, the 
part  of  the polymer which contacts the surface is not  specified (this specification 
could be made however without altering the conclusions presented here). The 
appropriate partit ion function is therefore 

Zn(T, fl) = Z g . ( 7 - , m ) e ~ m ,  (3.1) 
m 

where g. (T, m) is the number of  uniform embeddings of  T per lattice site in the 
half-space with n edges per branch and m + 1 vertices (m ~> 0) in the plane z = 0. In 
order to obtain rigorous results for this model we study the reduced limiting free 
energyper monomer, 

A(7-,/3) = lim N -1 log Z,(7-,/3), (3.2) 
?1 " ~  OO 

where the limit, if it exists, is assumed to go through even values of n unless 7- is 
bipartite. The results of  Hammersley, Torrie and Whit t ington [16] imply that  in the 
case 7- = [ the limit in eq. (32) exists and the function A(],/3) is convex, continuous 
and is bounded as follows: 

max(K, N2 --1-/3) ~<A(I,/3) ~< max(K, ~ +/3) ,  (3.3) 

where ~2 is the connective constant for self-avoiding walks in the square lattice, 
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Z 2. From these bounds one can conclude that there is a phase transition in the 
model (corresponding to adsorption) for some critical value of /3,/3c, where 
0 ~/3c ~< n - n2. In fact, further arguments by Hammersley, Torrie and Whittington 
[16] prove that 0 </3c < n - n2. 

We outline next a proof that the limit in eq. (3.2) exists for all 7- e G6 and that 

A(T,/3) = A(I ,/3). (3.4) 

Hence an adsorption transition exists for any uniform branched polymer with spe- 
cified topology and the transition occurs at the same value of/3,/3c, for all topolo- 
gies. A more detailed proof of this result is given by Soteros [11]. 

We prove that the limit in eq. (3.2) exists by proving eq. (3.4). The typical 
approach to proving such an equation is to use a "squeezing" argument, that is one 
shows that A(T,/3) ~>A([,/3) and A(~-,/3) ~<A([,/3). This is accomplished by obtain- 
ing lower and upper bounds respectively for the number of embeddings of 
7-, g~ (z, m), in terms of the number of undirected self-avoiding walks or self-avoid- 
ing polygons or some other type of object known to have limiting free energy 
A(I,/3). 

The upper bound is easy to obtain by noting that each embedding of 7- with n 
edges per branch can be separated in to f  n-step undirected self-avoiding walks each 
with at most m + 1 vertices in z = O. Some of t h e f  undirected self-avoiding walks 
will have contacts with the surface and others may not. Thus we get that 

gn(7-,m)<...f!2f~)-"gn([) f -k  ~-'~ Hgn( l , , n j ) ,  (3.5) 
k=l mi j=l  

where the f !2  f ensures that we are not undercounting and the mi range between 0 
and m such that }--~/k= 1 mi = m -- k + 1. Multiplying by e fin and summing over m on 
both sides of eq. (3.5), taking logarithms, dividing by N and letting n go to infinity 
leads to 

lim supN -1 log Z,(7-,/3)<~A(I,/3 ) . (3.6) 

Obtaining a lower bound is more difficult since we need to find a set of objects 
which have limiting free energy A(I,/3) and from which we can construct embed- 
dings o f t  with n edges per branch and rn + 1 vertices in z = 0. In this case the appro- 
priate set of objects turns out to be a set of self-avoiding polygons in wedges and it 
is thus appropriate to review the known results for walks and polygons in wedges. 

Define an (c~,/3, T)-wedge for a </3 to be {(x,y,  z)~ Z 3 l0 ~<x, c~x ~ y  ~/3x + T}, 
that is a wedge bounded by three planes perpendicular to the xy-plane, one is the yz- 
plane, the second, y = c~x, has slope c~ and the third, y =/3x, has slope/3. Hammers- 
ley and Whittington [17] proved that for any a > 0, directed self-avoiding walks 
and self-avoiding polygons, rooted at the origin, in a (0, o~, 0)-wedge each have con- 
nective constant ~. Their arguments can be extended to show that such walks and 
polygons also have limiting free energy A(I,/3). 
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Using the results for (0, a,  0)-wedges, Soteros [11] has proved that  given a such 
that  a or 1 / a  is an integer and/3 > a there exists a t such that  self-avoiding polygons 
rooted  at the origin in an (a,/3, T)-wedge each have limiting free energy A([,/3) pro- 
vided T >~ t. I f  a = j ,  an integer, and/3 = j + 1, then t = j + 1 and this ensures that  
a polygon rooted at the origin in a (j , j  + 1,j + 1)-wedge can contain edges in the 
positive x direction. 

Now let us return to obtaining a lower bound for gn(T, m). Suppose first that  n 
is even. There is more  than one way to obtain the required embedding of  7- using 
walks and polygons in wedges, however, perhaps the easiest construct ion to 
describe is the following. First, obtain an embedding of  7- in the half-space such 
that  

(1) exactly one edge of  each branch of  7- lies in the right most  (maximum x-coor-  
dinate) plane, say x = k, of  the embedding and so that  these right most  edges lie in 
the line z = 0 ,x  = k,y>~O (such a construction exists by the arguments  given in 

ref. [11]), 
(2) each branch has an even number  of  edges (just divide each existing edge on 

the lattice into two edges) and 
(3) the edges in the line z = 0, x = k are at l e a s t f  edges apart,  w h e r e f  is the num-  

ber of  branches o f t  (again see the construct ion in ref. [11]). 
We thus h a v e f  edges in the line z = 0, x = k,y>~O, one f rom each branch,  and 

we can label the branch whose edge in this line is closest to the x-axis the first 
branch, the branch with the next closest edge the second branch, etc. Suppose the 
j t h  branch has 2Mj edges f o r j  = 1 , . . .  , f  and suppose the resulting embedding of  7- 
has m* vertices in the plane z = 0. We now concatenate  to the first branch a poly- 
gon in a (0, 1, 1)-wedge with n + 2 - 2M1 edges and ml + 1 vertices in z = 0, and 
concatenate  to the second branch a polygon in a (1, 2, 2)-wedge with n + 2 - 2/142 
edges and rn2 + 1 vertices in z = 0 , . . . ,  and concatenate  to the j th  branch a polygon 
in a (j - 1, j ,  j ) -wedge with n + 2 - 2Mj edges and mj n t- 1 vertices in z = 0 , . . . ,  
and finally concatenate  to the f t h  branch a polygon in a ( f  - 1, f ,  f ) - w e d g e  with 
n + 2 - 2Mu edges and my + 1 vertices in z = 0. Finally, delete the edges in the line 
z = 0, x = k. This gives a uniform embedding of  7- with n edges per branch and 

1 -- ~]f=l mj + m* - f  vertices in z = 0, and we get a different embedding of  T- in + 

for every distinct ordered set o f f  polygons. Thus we have 

, ( ,  ) rnr O-ljj) 
1.[gn+Z_ZMj(O,mj)~g,~ 7 - , E m j + m * - - f - -  1 = g , ( ' r , m ) ,  (3.7) 
j = l  j = l  

where g~+~'_S'S~)j(O,mj) is the number  o f  (n + 2 - 2Mj)-step self-avoiding polygons 
in a (j - 1 , j , j ) -wedge with rnj + 1 vertices in z = 0. Multiply both  sides of  this equa- 
tion by exp(/3 ~ f = l  mi), sum over {mi, i = 1 , . . .  , f l l  <~mi<~n - Mi + 2}, take loga- 
r i thms of  both  sides, divide by N = nf  - c + 1 and let n go to infinity through even 
values ofn. This implies 
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A(l,fl)~< lim i n f N  -I log Z~(T,/3), (3.8) 
n --~ o o  

where the limit is taken through even values ofn. 
If  T is bipartite one also needs the corresponding inequality where the limit is 

taken through odd values of n. If  one obtains an embedding of  r satisfying the cri- 
teria (1) and (3) above and with (2) replaced by the criteria that each branch have an 
odd number  of  edges then the proof  described above would be sufficient to prove 
eq. (3.8) for the case n odd. If 7- is bipartite we can label the vertices of T with two 
labels (left and right say) so that  no two vertices having the same label are joined by 
an edge in 7-. In ref. [11] a construction is described which yields an embedding of 
7- in which there exists a plane x = k that intersects each branch of  the embedding at 
exactly one vertex and these vertices of intersection lie in the z = 0 plane. (Note 
that  such a construction is not possible for a graph which is not  bipartite such as the 
circle or figure eight graph.) This embedding can be constructed so that the number  
of  edges in each branch is odd. Concatenating an appropriate polygon to each 
branch will then allow one to construct an embedding of 7- satisfying criteria (1) and 
(3) above and also satisfying the constraint that the number  of  edges in each branch 
is odd. 

The conclusion is therefore that 

lim N -1 log ZN(7-,/~) = A(I,/3). (3.9) 
n - - ~  OO 

If  one wants to add a constraint that the polymer is attached to the surface at a spe- 
cific branch point  then the above proof  still works except that  now for the lower 
bound  one must  start with an embedding of  7- which satisfies the required con- 
straint. 

A corollary of  this is that eq. (2.3) is true. This comes from the fact that  
ZN(7-, 0) ---<gn (7-) and an upper bound for g~(7-) is obtained by embedding indepen- 
dent self-avoiding walks. 

4. U n i f o r m  branched polymers  in two d imens ions  in terac t ing  wi th  a l ine 

If  we restrict ourselves even further and consider graphs embedded on the 
square lattice, Z 2, then the picture changes considerably. The analog of eq. (2.3) is 
still true, that  is 

lim gn(T) = ~2, (4.1) 
n - - *  o o  

where now gn(r) represents the number  of  uniform embeddings o f t  per lattice site 
on the square lattice. However, the free energy of  a graph interacting with the line 
y -- 0 is no longer equal to that  for a self-avoiding walk. Note  that  in two dimen- 
sions 7- is restricted to the set of  planar graphs with maximum degree 4. 

We start by outlining the proof  of eq. (4.1). The argument  used to prove eq. 
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(2.3), conca tena t ing  polygons in ( j -  1, j , j )-wedges,  no longer works  here. Fo r  
example,  if one considers the case that  7- = O ,  the theta  graph, it is clearly impossi-  
ble to cons t ruc t  an embedding  of  the theta  graph such that  each branch has exactly 
one edge in a r ightmost  line since the middle  branch cannot  have any edges in a 
r igh tmos t  line. Ins tead we obtain a lower bound  for gn(r) by const ruct ing an 
embedding  of  r using walks in (0,1, 0)-wedges. The  upper  bound  is ob ta ined  as 
usual  by separat ing r i n t o f  self-avoiding walks. 

In this case we start  with a un i form embedding  of  r such tha t  there exists a line, 
x = k, which cuts every branch of  r exactly twice (see ref. [11] for a p r o o f  that  such 
an embedding  exists). Call this embedding  of  r T. There are hence 2f  vertices in 
the line x = k and we label these v0,. • . ,  v2f-1 according to the value of  their y-coor-  
dinates such that  v0 has the smallest y-coordinate .  Let  no be the n u m b e r  of  edges 
per  branch  in T with no even. 

Define C~ to be the set of  rooted n-step directed self-avoiding walks in a (0, 1, 
0)-wedge such tha t  the walk starts at (0, 0), ends at (M, 0) and  the coordinates  of  the 
ith step satisfy y < M - x for i < n. Define cff to be the n u m b e r  of  such walks. 
Thus  such a walk is conta ined  in an isosceles triangle with height  M / 2  and base M 
and  the triangle contains  ( [ (M/2J  + 1) ( [M/2]  + 1) sites of  the square lattice. Let  
c~ = Y]~M=I c~ ~. The arguments  of  Whi t t ing ton  [18] imply tha t  

l im n -1 log c~ = ec2. (4.2) 
/ ' / --~ OO 

Thus,  given an integer h>~4f 2, there exists a triangle with base M such tha t  
M > 2f  - 1 and such that  

c~  >1 -:-.c~' ( 4.3 ) 
n 

Fix such an M. 
The  idea now is to const ruct  a un i form embedding  of  r with n edges per branch,  

n even, by concatenat ing  a sequence of  walks f rom the set C~ to the vertices in the 
line x = k of  T. In order  to do this we mus t  ensure tha t  there is enough  vertical 
space between the vertices in the line x = k so tha t  the triangles of  height  M / 2  fit. 
First,  assume n ) 4 M f ( 2 f + l ) ÷ n o  and choose p and q such tha t  
n = 2hp + no + 4 M f ( 2 f  + 1 ) + 2q. Divide T along the line x = k into two parts,  a 
left part ,  TL, and  a right part ,  TR, and so that  the vertices v 0 , . . . ,  v2f-1 are dupli-  
cated with one set connected  to the left part ,  v L, .. L •, v2f_ 1 , and  the other  connec ted  

R to the r ight  part ,  v b , . . . ,  v2~_ 1 . Let  2 and ~ represent  the uni t  vectors in the posit ive 
R L x and  y directions respectwely. Translate  TR so that  v i = ~)i + [09 ÷ 4 f ) M  ÷q]gc 

for i =  0 , . . .  , 2 f -  1. It  is possible to connect  v L to v L + ( ( 4 f - 1 ) M ,  iM) by a 
sequence o f 2 M f ( 2 f  + 1) - (i + 1)M steps and  to connect  v R to @ + (M,  iM) by a 
sequence of  (i + 1)M steps (see ref. [11]) and  relabel the new endpoin ts  v L and  v R 
respectively for i = 0 , . . . ,  2 f  - 1. Now,  v L and vL+I are separa ted  by at least M 
steps in the positive y-direct ion and similarly v R and  R v;+ 1 are separa ted  by at  least 
M steps in the positive y-direction. Hence  a walk f rom the set C~ can be concate-  



C.E. So teros / Lattice models ofbranchedpolymers 99 

nated to v~ and in fact p such walks can be concatenated. (The resulting walk is in 
a slit of  height M.) If an additional q steps in the positive x-direction are added then 
v/L will be connected to v/g and doing this for each i results in an embedding of z 
with n edges per branch. A different embedding of ~- will result for each different 
ordered set of  2fp walks from e ~  and hence 

[c~] 2fp ~gn(~-). (4.4) 

Taking logarithms, dividing by N =fn - c + 1, fixing h and letting n--~ c~ in this 
equation yields, 

h -1 log c~ t ~< l iminf  N -1 log gn(T) • (4.5) 
?1---~ oO 

Letting h --~ oo and using eq. (4.2) leads to 

~2 ~< l i m i n f N  -1 log gn(r). (4.6) 
n ..--~ o o  

An upper  bound can be obtained in terms of self-avoiding walks as in the deriva- 
tion ofeq.  (3.5) and hence eq. (4.1) is true for the case that  the limit is taken through 
even values ofn. This is sufficient to prove that  eq. (4.1) is true for 'r  not  bipartite. 

To prove eq. (4.1) for the case that r is bipartite we need to get a construction 
which will give a uniform embedding of  r with an odd number  of  edges per branch. 
The argument  is essentially the same as above except now we start with a uniform 
embedding o f t  for which there exists a line x = k which cuts every edge of-r exactly 
once and we assume this embedding has no edges per branch (this embedding exists 
by the arguments given in ref. [11]). Now there are only f vertices in the line 
x = k. Given n odd, we choosep  and q such that n = hp + no + mf ( f  + 1) + q and 
the p roof  goes through as for eq. (4.6) with 2 f  replaced b y f  wherever it occurs. 

A proof  similar to the one just outlined could also have been used to prove eq. 
(3.8). We cannot,  however, prove the analog of (3.8) for the two-dimensional case 
using this approach since in the embedding of  z that would result only the bo t tom 
branch of  the embedding could have contacts with the line y = 0. Hence only the 
bo t tom branch would have free energy equal to that for a walk. 

In fact in two dimensions the analogs ofeqs.  (3.4) and (3.8) are not  true. In parti- 
cular Whit t ington and Soteros [5] showed that  they were not  true for T a 3-star 
and it is straightforward to generalize their argument  to show that the same holds 
for any r ¢ 1. The reason for this relies on the fact that for all cases, outside the walk 
case, it is not  possible for every vertex of the graph to lie in the line y = 0 and indeed 
a significant fraction of the vertices of  the graph will be unable to contact the line 
y = 0. This "shading" effect is most  important  in the attractive, large/3 regime. For  
the repulsive,/3 < 0, regime it is possible to show that, analogous to eq. (3.4), 

A('r,/3) = (A[,/3) = e;2, for/3,,<0. (4.7) 

For  general/3 the result in two dimensions is as follows: 
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max(hE, rn*(~-)/3) ~< l iminf  N -1 log Zn(~-,/3) 
t l  ---~ OO 

~< l i m s u p N  -1 log Zn('r, fl)<~max(nE, n2 + m*(~-)/3), (4.8) 
n --~ o o  

where 

m*(T)---- lim m~,(~-) (4.9) 
, - * ~ n f  - c +  l 

with m~(~-) = max{m[g,(~',m) ¢ 0} and g,('r,m) is now the number  of uniform 
embeddings of 'r  on the square lattice in the half-space y ~> 0 with n edges per branch 
and m + 1 vertices in the line y = 0. As usual the limit in eq. (4.9) is taken through 
only even values ofn  if-r is not bipartite. The bounds involving m* (T) arise from the 
fact that for/3 ~> 0 

,,;(~) 
e m'.(')~ <<.Z,(r,/3) = Z gn(T'm)emB <'gn(T)em"(r)fl" (4.10) 

m = 0  

Taking logarithms, dividing by N --- nf - c + 1, and letting n go to infinity in eq. 
(4.10) gives the terms involving m*(r) in eq. (4.8). The lower bound involving ~2 
comes from considering embeddings o f t  as in the construction leading to eq. (4.4) 
with exactly two vertices in y --- 0. The upper bound involving ~2 comes from the 
fact that  for/3 ~< 0, Z .  (~-,/3) ~< Z.  (r, 0) ~ g. (r). 

In the special cases r = I and r = O the limit l i m . - ~ N  -I log Z.(r , /3)  
= A(r,/3) has been proved to exist. One can show that m*([) = 1 and m*(C)) = 1/2 
and hence for/3 > 0, the slope of the upper bound for A (C),/3) is less than the slope 
of  the lower bound for A (I,/3). This indicates that there exists/3' > 0 such that  

A(O,/3)  <A(I,/3) (4.11) 

for all /3>//3'. Whit t ington and Soteros [5] showed that m*(f-star) = 2 / f < l  
= m* (I) f o r f  = 3, 4 and hence there exists/3' > 0 such that  

lim sup N -1 log Z ,  (f-star,/3) < A (1,/3) (4.12) 
n --~ o o  

for all/3 >//3'. 
Consider  the configuration of a uniform dumbbell  with n edges per branch in 

which all the vertices of  the central branch lie in y = 0 an half  the vertices of  each of  
the cycles lie in y = 0. There is one such configuration for each n, n even, having a 
total of 3n - 1 vertices and the maximum number  of  vertices, 2(n - 1) + 1 vertices, 
in the line y -- 0 and hence m~(O-C))  = 2(n - 1). Hence m * ( O - O )  = 2/3. Simi- 
larly one can show m* (O)  = 1/3 and hence there exists/3~ > 0 such that  

l i m s u p N  -1 log Z,(@,/3)  <A(©, /3 )  < l i m i n f N  -1 log Z , ( O - O , / 3 )  
n _ ~ O  O ~1 -'1~ 1313 

~< lim s u p N  -1 log Z , ( O - O , / 3 )  <A(I,/3) 
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for all/3 ~>/3'. Thus the free energy in the attractive (large/3) regime is very depen- 
dent on the structure of the graph and not  just on the graph index set of the graph. 

Soteros [11] has shown that 

1 -~ <~m*(7-) <~r, (4.14) 

where s = 1 if T is bipartite and s = 2 otherwise and r = (f - c + n3 + n4 q- 1) /2f  
if r has a cut-edge and r = min{ (f - e + n3 + n4 + 1)/2f, ½} if ~- does not  have a cut- 
edge. Note  that for any 7- ¢ I, r <  1. Hence eq. (4.14) and eq. (4.8) imply that  for 
any 7- ¢ I there exists/3~ > 0 such that 

lim s u p N  -1 log Zn(r,/3) <A(I,/3) (4.15) 
n - - ~  oo 

for all/3/>/3'. 
The upper bound in eq. (4.14) was obtained by breaking a uniform embedding 

of 7- into a set of  independent walks, 3-stars and 4-stars and using this to obtain an 
upper bound on the number  of  vertices of the graph which can lie in y -- 0. This 
argument  gives r = (f - c + n3 + n4 + 1)/2f. In the special case that  7- does not  
have a cut-edge one can prove that lim s u p , ~  N -1 log Z,(7-,/3) ~<A(C),/3) (see 
theorem 3 of  ref. [11]) and that argument  leads to r = 1/2. One obtains the lower 
bound /3 / s f  in eq. (4.14) by considering the embedding constructed in the p roof  of 
eq. (4.6) and forcing all the vertices in the bot tom branch to lie in the l iney = 0. 

5. Discuss ion  

The results reviewed in this paper indicate the following for large uniformly 
branched polymers with fixed topology. In three dimensions, such polymers inter- 
acting with a plane have the same free energy per monomer  as large linear poly- 
mers interacting with a plane and hence the adsorption temperature is independent  
of  the polymer's topology. In two dimensions, in the repulsive (/3 < 0) regime such 
polymers again act like large linear polymers; this is because entropic effects domi- 
nate and their entropy per monomer  is the same as that of linear polymers. In two 
dimensions and in the attractive, large/3, regime the free energy per monomer  
becomes strictly less than that  of  linear polymers. This implies that  the adsorpt ion 
transition occurs for a value of/3 =/3* which is greater than or equal to/3e, the criti- 
cal value for linear polymers; however, the possibility that/3* =/3c has not  been 
ruled out. 

These conclusions are all based on rigorous results for the free energy per mono-  
mer in the infinite n limit. So far we have been unable to say anything rigorously 
about  the o(n) terms in the free energy per monomer .  Such information would help 
define what  we mean by large. A computer  study of various polymers with fixed 
topology could shed some light on this issue. 
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